	Platform SDK: DLLs, Processes, and Threads

Dynamic-Link Libraries

A dynamic-link library (DLL) is a module that contain functions and data that can be used by another module (application or DLL).

A DLL can define two kinds of functions: exported and internal. The exported functions are intended to be called by other modules, as well as from within the DLL where they are defined. Internal functions are typically intended to be called only from within the DLL where they are defined. Although a DLL can export data, its data is generally used only by its functions. However, there is nothing to prevent another module from reading or writing that address.

DLLs provide a way to modularize applications so that functionality can be updated and reused more easily. They also help reduce memory overhead when several applications use the same functionality at the same time, because although each application gets its own copy of the data, they can share the code.

The Windows application programming interface (API) is implemented as a set of dynamic-link libraries, so any process that uses the Windows API uses dynamic linking.

About Dynamic-Link Libraries

Dynamic linking allows a module to include only the information needed to locate an exported DLL function at load time or run time. Dynamic linking differs from the more familiar static linking, in which the linker copies a library function's code into each module that calls it.

Types of Dynamic Linking

There are two methods for calling a function in a DLL:

· In load-time dynamic linking, a module makes explicit calls to exported DLL functions as if they were local functions. This requires you to link the module with the import library for the DLL that contains the functions. An import library supplies the system with the information needed to load the DLL and locate the exported DLL functions when the application is loaded. For more information, see Load-Time Dynamic Linking.

· In run-time dynamic linking, a module uses the LoadLibrary or LoadLibraryEx function to load the DLL at run time. After the DLL is loaded, the module calls the GetProcAddress function to get the addresses of the exported DLL functions. The module calls the exported DLL functions using the function pointers returned by GetProcAddress. This eliminates the need for an import library. For more information, see Using Run-Time Dynamic Linking.

DLLs and Memory Management

Every process that loads the DLL maps it into its virtual address space. After the process loads the DLL into its virtual address, it can call the exported DLL functions.

The system maintains a per-thread reference count for each DLL. When a thread loads the DLL, the reference count is incremented by one. When the process terminates, or when the reference count becomes zero (run-time dynamic linking only), the DLL is unloaded from the virtual address space of the process.

Like any other function, an exported DLL function runs in the context of the thread that calls it. Therefore, the following conditions apply:

· The threads of the process that called the DLL can use handles opened by a DLL function. Similarly, handles opened by any thread of the calling process can be used in the DLL function.

· The DLL uses the stack of the calling thread and the virtual address space of the calling process.

· The DLL allocates memory from the virtual address space of the calling process.

Using Dynamic-Link Libraries

The following examples demonstrate how to create and use a DLL.

· Creating a simple dynamic-link library

· Using load-time dynamic linking

· Using run-time dynamic linking

· Using shared memory in a dynamic-link library

· Using thread local storage in a dynamic-link library

Creating a Simple Dynamic-Link Library

The following example, MYPUTS.C, is the source code needed to create a simple DLL, MYPUTS.DLL. The file MYPUTS.C contains a simple string-printing function called myPuts. The MYPUTS DLL does not define an entry-point function, because it is linked with the C run-time library and has no initialization or cleanup functions of its own to perform.

// File: MYPUTS.C.

// The myPuts function writes a null-terminated string to

// the standard output device.

#include <windows.h>

#define EOF (-1)

int myPuts(LPTSTR lpszMsg)

{

 DWORD cchWritten;

 HANDLE hStdout;

 BOOL fRet;

 // Get a handle to the standard output device.

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 if (INVALID_HANDLE_VALUE == hStdOut)

 return EOF;

 // Write a null-terminated string to the standard output device.

 while (*lpszMsg != '\0')

 {

 fRet = WriteFile(hStdout, lpszMsg, 1, &cchWritten, NULL);

 if((FALSE == fRet) || (1 != cchWritten))

 return EOF;

 lpszMsg++;

 }

 return 1;

}

To build the DLL, follow the directions in the documentation included with your development tools.

Using Load-Time Dynamic Linking

After you have created a DLL, you can use it in an application. The following file, LOADTIME.C, is the source code for a simple console application that uses the myPuts function exported from MYPUTS.DLL.

// File: LOADTIME.C.

// A simple program that uses myPuts from MYPUTS.DLL.

#include <windows.h>

VOID myPuts(LPTSTR); // a function from a DLL

int main(VOID)

{

 int Ret = 1;

 Ret = myPuts("message printed using the DLL function\n");

 return Ret;

}

Because LOADTIME.C calls the DLL function explicitly, the module for the application must be linked with the import library MYPUTS.LIB. For more information about building DLLs, see the documentation included with your development tools.

Using Run-Time Dynamic Linking

You can use the same DLL in both load-time and run-time dynamic linking. The following source code produces the same output as the load-time example in the previous section. The program uses the LoadLibrary function to get a handle to MYPUTS.DLL. If LoadLibrary succeeds, the program uses the returned handle in the GetProcAddress function to get the address of the DLL's myPuts function. After calling the DLL function, the program calls the FreeLibrary function to unload the DLL.

The following example illustrates an important difference between run-time and load-time dynamic linking. If the MYPUTS.DLL file is not available, the application using load-time dynamic linking simply terminates. The run-time dynamic linking example, however, can respond to the error.

// File: RUNTIME.C

// A simple program that uses LoadLibrary and

// GetProcAddress to access myPuts from MYPUTS.DLL.

#include <stdio.h>

#include <windows.h>

typedef VOID (*MYPROC)(LPTSTR);

VOID main(VOID)

{

 HINSTANCE hinstLib;

 MYPROC ProcAdd;

 BOOL fFreeResult, fRunTimeLinkSuccess = FALSE;

 // Get a handle to the DLL module.

 hinstLib = LoadLibrary("myputs");

 // If the handle is valid, try to get the function address.

 if (hinstLib != NULL)

 {

 ProcAdd = (MYPROC) GetProcAddress(hinstLib, "myPuts");

 // If the function address is valid, call the function.

 if (NULL != ProcAdd)

 {

 fRunTimeLinkSuccess = TRUE;

 (ProcAdd) ("message via DLL function\n");

 }

 // Free the DLL module.

 fFreeResult = FreeLibrary(hinstLib);

 }

 // If unable to call the DLL function, use an alternative.

 if (! fRunTimeLinkSuccess)

 printf("message via alternative method\n");

}

Because the program uses run-time dynamic linking, you should not link with the import library when creating the program module.

Using Shared Memory in a Dynamic-Link Library

This topic shows how the DLL entry-point function can use a file-mapping object to set up memory that can be shared by processes that load the DLL. The shared DLL memory persists only as long as the DLL is loaded.

The example uses file mapping to map a block of named shared memory into the virtual address space of each process that loads the DLL. To do this, the entry-point function must:

1. Call the CreateFileMapping function to get a handle to a file-mapping object. The first process that loads the DLL creates the file-mapping object. Subsequent processes open a handle to the existing object. For more information, see Creating a File-Mapping Object.

2. Call the MapViewOfFile function to map a view into the virtual address space. This enables the process to access the shared memory. For more information, see Creating a File View.

// File: DLLSHMEM.C.

// The DLL entry-point function sets up shared memory using

// a named file-mapping object.

#include <windows.h>

#include <memory.h>

#define SHMEMSIZE 4096

static LPVOID lpvMem = NULL; // pointer to shared memory

BOOL DllMain(HINSTANCE hinstDLL, // DLL module handle

 DWORD fdwReason, // reason called

 LPVOID lpvReserved) // reserved

{

 HANDLE hMapObject = NULL; // handle to file mapping

 BOOL fInit, fIgnore;

 switch (fdwReason)

 {

 // The DLL is loading due to process

 // initialization or a call to LoadLibrary.

 case DLL_PROCESS_ATTACH:

 // Create a named file mapping object.

 hMapObject = CreateFileMapping(

 INVALID_HANDLE_VALUE, // use paging file

 NULL, // default security attributes

 PAGE_READWRITE, // read/write access

 0, // size: high 32-bits

 SHMEMSIZE, // size: low 32-bits

 "dllmemfilemap"); // name of map object

 if (hMapObject == NULL)

 return FALSE;

 // The first process to attach initializes memory.

 fInit = (GetLastError() != ERROR_ALREADY_EXISTS);

 // Get a pointer to the file-mapped shared memory.

 lpvMem = MapViewOfFile(

 hMapObject, // object to map view of

 FILE_MAP_WRITE, // read/write access

 0, // high offset: map from

 0, // low offset: beginning

 0); // default: map entire file

 if (lpvMem == NULL)

 return FALSE;

 // Initialize memory if this is the first process.

 if (fInit)

 memset(lpvMem, '\0', SHMEMSIZE);

 break;

 // The attached process creates a new thread.

 case DLL_THREAD_ATTACH:

 break;

 // The thread of the attached process terminates.

 case DLL_THREAD_DETACH:

 break;

 // The DLL is unloading from a process due to

 // process termination or a call to FreeLibrary.

 case DLL_PROCESS_DETACH:

 // Unmap shared memory from the process's address space.

 fIgnore = UnmapViewOfFile(lpvMem);

 // Close the process's handle to the file-mapping object.

 fIgnore = CloseHandle(hMapObject);

 break;

 default:

 break;

 }

 return TRUE;

 UNREFERENCED_PARAMETER(hinstDLL);

 UNREFERENCED_PARAMETER(lpvReserved);

}

// SetSharedMem sets the contents of shared memory.

VOID SetSharedMem(LPTSTR lpszBuf)

{

 LPTSTR lpszTmp;

 // Get the address of the shared memory block.

 lpszTmp = (LPTSTR) lpvMem;

 // Copy the null-terminated string into shared memory.

 while (*lpszBuf)

 *lpszTmp++ = *lpszBuf++;

 *lpszTmp = '\0';

}

// GetSharedMem gets the contents of shared memory.

VOID GetSharedMem(LPTSTR lpszBuf, DWORD cchSize)

{

 LPTSTR lpszTmp;

 // Get the address of the shared memory block.

 lpszTmp = (LPTSTR) lpvMem;

 // Copy from shared memory into the caller's buffer.

 while (*lpszTmp && --cchSize)

 *lpszBuf++ = *lpszTmp++;

 *lpszBuf = '\0';

}

Note that the shared memory can be mapped to a different address in each process. For this reason, each process has its own instance of the lpvMem parameter, which is declared as a global variable so that it is available to all DLL functions. The example assumes that the DLL global data is not shared, so each process that loads the DLL has its own instance of lpvMem.

In this example, the shared memory is released when the last handle to the file-mapping object is closed. To create persistent shared memory, a DLL can create a detached process (see CreateProcess) when the DLL is first loaded. If this detached process uses the DLL and does not terminate, it has a handle to the file-mapping object that prevents the shared memory from being released.

[image: image1]
Using Thread Local Storage in a Dynamic-Link Library

This section shows the use of a DLL entry-point function to set up a thread local storage (TLS) index to provide private storage for each thread of a multithreaded process.

The entry-point function uses the TlsAlloc function to allocate a TLS index whenever a process loads the DLL. Each thread can then use this index to store a pointer to its own block of memory.

When the entry-point function is called with the DLL_PROCESS_ATTACH value, the code performs the following actions:

1. Uses the TlsAlloc function to allocate a TLS index.

2. Allocates a block of memory to be used exclusively by the initial thread of the process.

3. Uses the TLS index in a call to the TlsSetValue function to store a pointer to the allocated memory.

Each time the process creates a new thread, the entry-point function is called with the DLL_THREAD_ATTACH value. The entry-point function then allocates a block of memory for the new thread and stores a pointer to it by using the TLS index. Each thread can use the TLS index in a call to TlsGetValue to retrieve the pointer to its own block of memory.

When a thread terminates, the entry-point function is called with the DLL_THREAD_DETACH value and the memory for that thread is freed. When a process terminates, the entry-point function is called with the DLL_PROCESS_DETACH value and the memory referenced by the pointer in the TLS index is freed.

The TLS index is stored in a global variable, making it available to all of the DLL functions. The following example assumes that the DLL's global data is not shared, because the TLS index is not necessarily the same for each process that loads the DLL.

static DWORD dwTlsIndex; // address of shared memory

// DllMain() is the entry-point function for this DLL.

BOOL DllMain(HINSTANCE hinstDLL, // DLL module handle

 DWORD fdwReason, // reason called

 LPVOID lpvReserved) // reserved

{

 LPVOID lpvData;

 BOOL fIgnore;

 switch (fdwReason)

 {

 // The DLL is loading due to process

 // initialization or a call to LoadLibrary.

 case DLL_PROCESS_ATTACH:

 // Allocate a TLS index.

 if ((dwTlsIndex = TlsAlloc()) == 0xFFFFFFFF)

 return FALSE;

 // No break: Initialize the index for first thread.

 // The attached process creates a new thread.

 case DLL_THREAD_ATTACH:

 // Initialize the TLS index for this thread.

 lpvData = (LPVOID) LocalAlloc(LPTR, 256);

 if (lpvData != NULL)

 fIgnore = TlsSetValue(dwTlsIndex, lpvData);

 break;

 // The thread of the attached process terminates.

 case DLL_THREAD_DETACH:

 // Release the allocated memory for this thread.

 lpvData = TlsGetValue(dwTlsIndex);

 if (lpvData != NULL)

 LocalFree((HLOCAL) lpvData);

 break;

 // DLL unload due to process termination or FreeLibrary.

 case DLL_PROCESS_DETACH:

 // Release the allocated memory for this thread.

 lpvData = TlsGetValue(dwTlsIndex);

 if (lpvData != NULL)

 LocalFree((HLOCAL) lpvData);

 // Release the TLS index.

 TlsFree(dwTlsIndex);

 break;

 default:

 break;

 }

 return TRUE;

 UNREFERENCED_PARAMETER(hinstDLL);

 UNREFERENCED_PARAMETER(lpvReserved);

}

When a process uses load-time linking with this DLL, the entry-point function is sufficient to manage the thread local storage. Problems can occur with a process that uses run-time linking because the entry-point function is not called for threads that exist before the LoadLibrary function is called, so TLS memory is not allocated for these threads. The following example solves this problem by checking the value returned by the TlsGetValue function and allocating memory if the value indicates that the TLS slot for this thread is not set.

LPVOID lpvData;

// Retrieve a data pointer for the current thread.

lpvData = TlsGetValue(dwTlsIndex);

// If NULL, allocate memory for this thread.

if (lpvData == NULL)

{

 lpvData = (LPVOID) LocalAlloc(LPTR, 256);

 if (lpvData != NULL)

 TlsSetValue(dwTlsIndex, lpvData);

}

Dynamic-Link Library Reference

The following elements are used in dynamic linking.

· Dynamic-Link Library Functions

Dynamic-Link Library Functions

The following functions are used in dynamic linking.

	Function
	Description

	DisableThreadLibraryCalls
	Disables thread attach and thread detach notifications for the specified DLL.

	DllMain
	An optional entry point into a DLL.

	FreeLibrary
	Decrements the reference count of the loaded DLL. When the reference count reaches zero, the module is unmapped from the address space of the calling process.

	FreeLibraryAndExitThread
	Decrements the reference count of a loaded DLL by one, and then calls ExitThread to terminate the calling thread.

	GetDllDirectory
	Retrieves the application-specific portion of the search path used to locate DLLs for the application.

	GetModuleFileName
	Retrieves the full path and file name for the file containing the specified module.

	GetModuleHandle
	Retrieves a module handle for the specified module.

	GetModuleHandleEx
	Retrieves a module handle for the specified module.

	GetProcAddress
	Retrieves the address of an exported function or variable from the specified DLL.

	LoadLibrary
	Maps the specified executable module into the address space of the calling process.

	LoadLibraryEx
	Maps the specified executable module into the address space of the calling process.

	SetDllDirectory
	Modifies the search path used to locate DLLs for the application.

Obsolete Functions

These functions are provided only for compatibility with 16-bit versions of Windows.

LoadModule
DisableThreadLibraryCalls

The DisableThreadLibraryCalls function disables the DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifications for the specified dynamic-link library (DLL). This can reduce the size of the working set for some applications.

BOOL DisableThreadLibraryCalls(
 HMODULE hModule
);
Parameters
hModule

[in] Handle to the DLL module for which the DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifications are to be disabled. The LoadLibrary or GetModuleHandle function returns this handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The DisableThreadLibraryCalls function fails if the DLL specified by hModule has active static thread local storage, or if hModule is an invalid module handle. To get extended error information, call GetLastError.

Remarks
The DisableThreadLibraryCalls function lets a DLL disable the DLL_THREAD_ATTACH and DLL_THREAD_DETACH notification calls. This can be a useful optimization for multithreaded applications that have many DLLs, frequently create and delete threads, and whose DLLs do not need these thread-level notifications of attachment/detachment. A remote procedure call (RPC) server application is an example of such an application. In these sorts of applications, DLL initialization routines often remain in memory to service DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifications. By disabling the notifications, the DLL initialization code is not paged in because a thread is created or deleted, thus reducing the size of the application's working code set. To implement the optimization, modify a DLL's DLL_PROCESS_ATTACH code to call DisableThreadLibraryCalls.

Requirements
Client: Included in Windows XP, Windows 2000 Professional, Windows NT Workstation 3.5 and later, Windows Me, Windows 98, and Windows 95.
Server: Included in Windows Server 2003, Windows 2000 Server, and Windows NT Server 3.5 and later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, FreeLibraryAndExitThread
DllMain

The DllMain function is an optional entry point into a dynamic-link library (DLL). If the function is used, it is called by the system when processes and threads are initialized and terminated, or upon calls to the LoadLibrary and FreeLibrary functions.

DllMain is a placeholder for the library-defined function name. You must specify the actual name you use when you build your DLL. For more information, see the documentation included with your development tools.

BOOL WINAPI DllMain(
 HINSTANCE hinstDLL,

 DWORD fdwReason,

 LPVOID lpvReserved
);
Parameters
hinstDLL

[in] Handle to the DLL module. The value is the base address of the DLL. The HINSTANCE of a DLL is the same as the HMODULE of the DLL, so hinstDLL can be used in calls to functions that require a module handle.

fdwReason

[in] Indicates why the DLL entry-point function is being called. This parameter can be one of the following values.

	Value
	Meaning

	DLL_PROCESS_ATTACH
	The DLL is being loaded into the virtual address space of the current process as a result of the process starting up or as a result of a call to LoadLibrary. DLLs can use this opportunity to initialize any instance data or to use the TlsAlloc function to allocate a thread local storage (TLS) index.

	DLL_THREAD_ATTACH
	The current process is creating a new thread. When this occurs, the system calls the entry-point function of all DLLs currently attached to the process. The call is made in the context of the new thread. DLLs can use this opportunity to initialize a TLS slot for the thread. A thread calling the DLL entry-point function with DLL_PROCESS_ATTACH does not call the DLL entry-point function with DLL_THREAD_ATTACH.

Note that a DLL's entry-point function is called with this value only by threads created after the DLL is loaded by the process. When a DLL is loaded using LoadLibrary, existing threads do not call the entry-point function of the newly loaded DLL.

	DLL_THREAD_DETACH
	A thread is exiting cleanly. If the DLL has stored a pointer to allocated memory in a TLS slot, it should use this opportunity to free the memory. The system calls the entry-point function of all currently loaded DLLs with this value. The call is made in the context of the exiting thread.

	DLL_PROCESS_DETACH
	The DLL is being unloaded from the virtual address space of the calling process as a result of unsuccessfully loading the DLL, termination of the process, or a call to FreeLibrary. The DLL can use this opportunity to call the TlsFree function to free any TLS indices allocated by using TlsAlloc and to free any thread local data.

Note that the thread that receives the DLL_PROCESS_DETACH notification is not necessarily the same thread that received the DLL_PROCESS_ATTACH notification.

lpvReserved

[in] If fdwReason is DLL_PROCESS_ATTACH, lpvReserved is NULL for dynamic loads and non-NULL for static loads.

If fdwReason is DLL_PROCESS_DETACH, lpvReserved is NULL if DllMain has been called by using FreeLibrary and non-NULL if DllMain has been called during process termination.

Return Values
When the system calls the DllMain function with the DLL_PROCESS_ATTACH value, the function returns TRUE if it succeeds or FALSE if initialization fails. If the return value is FALSE when DllMain is called because the process uses the LoadLibrary function, LoadLibrary returns NULL. (The system immediately calls your entry-point function with DLL_PROCESS_DETACH and unloads the DLL.) If the return value is FALSE when DllMain is called during process initialization, the process terminates with an error. To get extended error information, call GetLastError.

When the system calls the DllMain function with any value other than DLL_PROCESS_ATTACH, the return value is ignored.

Remarks
During initial process startup or after a call to LoadLibrary, the system scans the list of loaded DLLs for the process. For each DLL that has not already been called with the DLL_PROCESS_ATTACH value, the system calls the DLL's entry-point function. This call is made in the context of the thread that caused the process address space to change, such as the primary thread of the process or the thread that called LoadLibrary. Access to the entry point is serialized by the system on a process-wide basis.

There are cases in which the entry-point function is called for a terminating thread even if the entry-point function was never called with DLL_THREAD_ATTACH for the thread:

· The thread was the initial thread in the process, so the system called the entry-point function with the DLL_PROCESS_ATTACH value.

· The thread was already running when a call to the LoadLibrary function was made, so the system never called the entry-point function for it.

When a DLL is unloaded from a process as a result of an unsuccessful load of the DLL, termination of the process, or a call to FreeLibrary, the system does not call the DLL's entry-point function with the DLL_THREAD_DETACH value for the individual threads of the process. The DLL is only sent a DLL_PROCESS_DETACH notification. DLLs can take this opportunity to clean up all resources for all threads known to the DLL. However, if the DLL does not successfully complete a DLL_PROCESS_ATTACH notification, the DLL does not receive either a DLL_THREAD_DETACH or DLL_PROCESS_DETACH notification.

Warning The entry-point function should perform only simple initialization or termination tasks. It must not call the LoadLibrary or LoadLibraryEx function (or a function that calls these functions), because this may create dependency loops in the DLL load order. This can result in a DLL being used before the system has executed its initialization code. Similarly, the entry-point function must not call the FreeLibrary function (or a function that calls FreeLibrary), because this can result in a DLL being used after the system has executed its termination code.

It is safe to call other functions in Kernel32.dll, because this DLL is guaranteed to be loaded in the process address space when the entry-point function is called. It is common for the entry-point function to create synchronization objects such as critical sections and mutexes, and use TLS. Do not call the registry functions, because they are located in Advapi32.dll. If you are dynamically linking with the C run-time library, do not call malloc; instead, call HeapAlloc.

Calling imported functions other than those located in Kernel32.dll may result in problems that are difficult to diagnose. For example, calling User, Shell, and COM functions can cause access violation errors, because some functions in their DLLs call LoadLibrary to load other system components. Conversely, calling those functions during termination can cause access violation errors because the corresponding component may already have been unloaded or uninitialized.

Because DLL notifications are serialized, entry-point functions should not attempt to communicate with other threads or processes. Deadlocks may occur as a result.

Note To provide more complex initialization, create an initialization routine for the DLL. You can require applications to call the initialization routine before calling any other routines in the DLL. Otherwise, you can have the initialization routine create a named mutex, and have each routine in the DLL call the initialization routine if the mutex does not exist. Be sure to use a unique mutex name for each process that loads the DLL.

FreeLibraryAndExitThread

The FreeLibraryAndExitThread function decrements the reference count of a loaded dynamic-link library (DLL) by one, just as FreeLibrary does, then calls ExitThread to terminate the calling thread. The function does not return.

void FreeLibraryAndExitThread(
 HMODULE hModule,

 DWORD dwExitCode
);
Parameters
hModule

[in] Handle to the DLL module whose reference count the function decrements. The LoadLibrary or GetModuleHandle function returns this handle.

dwExitCode

[in] Exit code for the calling thread.

Return Values
The function does not return. Invalid hModule handles are ignored.

Remarks
The FreeLibraryAndExitThread function allows threads that are executing within a DLL to safely free the DLL in which they are executing and terminate themselves. If they were to call FreeLibrary and ExitThread separately, a race condition would exist. The library could be unloaded before ExitThread is called.

GetDllDirectory

The GetDllDirectory function retrieves the application-specific portion of the search path used to locate DLLs for the application.

void GetDllDirectory(
 DWORD nBufferLength,

 LPTSTR lpBuffer
);
Parameters
nBufferLength

Size of the output buffer, in characters.

lpBuffer

Pointer to a buffer that receives the application-specific portion of the search path.

Return Values
If the function succeeds, the return value is the length of the string copied to lpBuffer, in characters, not including the terminating null character. If the return value is greater than nBufferLength, it specifies the size of the buffer required for the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
To compile an application that uses this function, define the _WIN32_WINNT macro as 0x0502 or later. For more information, see Using the SDK Headers.

GetModuleFileName

The GetModuleFileName function retrieves the fully qualified path for the specified module.

To specify the process that contains the module, use the GetModuleFileNameEx function.

DWORD GetModuleFileName(
 HMODULE hModule,

 LPTSTR lpFilename,

 DWORD nSize
);
Parameters
hModule

[in] Handle to the module whose path is being requested. If this parameter is NULL, GetModuleFileName retrieves the path for the current module.

lpFilename

[out] Pointer to a buffer that receives a null-terminated string that specifies the fully-qualified path of the module. If the length of the path exceeds the size specified by the nSize parameter, the function succeeds and the string is truncated to nSize characters and null terminated.

The path can have the prefix "\\?\", depending on how the module was loaded. For more information, see Naming a File.

nSize

[in] Size of the lpFilename buffer, in TCHARs.

Return Values
If the function succeeds, the return value is the length of the string copied to the buffer, in TCHARs. If the buffer is too small to hold the module name, the string is truncated to nSize, and the function returns nSize.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If a DLL is loaded in two processes, its file name in one process may differ in case from its file name in the other process.

For the ANSI version of the function, the number of TCHARs is the number of bytes; for the Unicode version, it is the number of characters.

Windows Me/98/95: This function retrieves long file names when an application's version number is greater than or equal to 4.00 and the long file name is available. Otherwise, it returns only 8.3 format file names.

Windows Me/98/95: GetModuleFileNameW is supported by the Microsoft Layer for Unicode. To use this, you must add certain files to your application, as outlined in Microsoft Layer for Unicode on Windows Me/98/95 Systems.

GetModuleHandle

The GetModuleHandle function retrieves a module handle for the specified module if the file has been mapped into the address space of the calling process.

To avoid the race conditions described in the Remarks section, use the GetModuleHandleEx function.

HMODULE GetModuleHandle(
 LPCTSTR lpModuleName
);
Parameters
lpModuleName

[in] Pointer to a null-terminated string that contains the name of the module (either a .dll or .exe file). If the file name extension is omitted, the default library extension .dll is appended. The file name string can include a trailing point character (.) to indicate that the module name has no extension. The string does not have to specify a path. When specifying a path, be sure to use backslashes (\), not forward slashes (/). The name is compared (case independently) to the names of modules currently mapped into the address space of the calling process.

If this parameter is NULL, GetModuleHandle returns a handle to the file used to create the calling process.

Return Values
If the function succeeds, the return value is a handle to the specified module.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The returned handle is not global or inheritable. It cannot be duplicated or used by another process.

The GetModuleHandle function returns a handle to a mapped module without incrementing its reference count. Therefore, use care when passing the handle to the FreeLibrary function, because doing so can cause a DLL module to be unmapped prematurely.

This function must be used carefully in a multithreaded application. There is no guarantee that the module handle remains valid between the time this function returns the handle and the time it is used. For example, a thread retrieves a module handle, but before it uses the handle, a second thread frees the module. If the system loads another module, it could reuse the module handle that was recently freed. Therefore, first thread would have a handle to a module different than the one intended.

Windows Me/98/95: GetModuleHandleW is supported by the Microsoft Layer for Unicode. To use this, you must add certain files to your application, as outlined in Microsoft Layer for Unicode on Windows Me/98/95 Systems.

GetModuleHandleEx

The GetModuleHandleEx function retrieves a module handle for the specified module if the file has been mapped into the address space of the calling process.

BOOL GetModuleHandleEx(
 DWORD dwFlags,

 LPCTSTR lpModuleName,

 HMODULE* phModule
);
Parameters
dwFlags

[in] This parameter can be one or more of the following values.

	Value
	Meaning

	0
	Increment the reference count. This is the default case.

The caller must use the FreeLibrary function when they have finished using the module handle.

	GET_MODULE_HANDLE_EX_FLAG_PIN
	The module stays loaded until the process is terminated, no matter how many times FreeLibrary is called.

This option cannot be used with GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT.

	GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT
	Do not increment the reference count for the module. This option is equivalent to the behavior of GetModuleHandle.

This option cannot be used with GET_MODULE_HANDLE_EX_FLAG_PIN.

	GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS
	The lpModuleName parameter is an address in the module.

lpModuleName

[in] Pointer to a null-terminated string that contains the name of the module (either a .dll or .exe file), or a pointer to an address in the module (if dwFlags is GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS).

For a module name, if the file name extension is omitted, the default library extension .dll is appended. The file name string can include a trailing point character (.) to indicate that the module name has no extension. The string does not have to specify a path. When specifying a path, be sure to use backslashes (\), not forward slashes (/). The name is compared (case independently) to the names of modules currently mapped into the address space of the calling process.

If this parameter is NULL, the function returns a handle to the file used to create the calling process.

phModule

[out] Handle to the specified module. If the function fails, this parameter is NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, see GetLastError.

Remarks
The handle returned is not global or inheritable. It cannot be duplicated or used by another process.

If dwFlags contains GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, use care when passing the handle to the FreeLibrary function, because doing so can cause a DLL module to be unmapped prematurely.

If dwFlags contains GET_MODULE_HANDLE_EX_UNCHANGED_REFCOUNT, this function must be used carefully in a multithreaded application. There is no guarantee that the module handle remains valid between the time this function returns the handle and the time it is used. For example, a thread retrieves a module handle, but before it uses the handle, a second thread frees the module. If the system loads another module, it could reuse the module handle that was recently freed. Therefore, first thread would have a handle to a module different than the one intended.

To compile an application that uses this function, define the _WIN32_WINNT macro as 0x0500 or later. For more information, see Using the SDK Headers.

GetProcAddress

The GetProcAddress function retrieves the address of an exported function or variable from the specified dynamic-link library (DLL).

FARPROC GetProcAddress(
 HMODULE hModule,

 LPCSTR lpProcName
);
Parameters
hModule

[in] Handle to the DLL module that contains the function or variable. The LoadLibrary or GetModuleHandle function returns this handle.

lpProcName

[in] Pointer to a null-terminated string that specifies the function or variable name, or the function's ordinal value. If this parameter is an ordinal value, it must be in the low-order word; the high-order word must be zero.

Return Values
If the function succeeds, the return value is the address of the exported function or variable.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The spelling and case of a function name pointed to by lpProcName must be identical to that in the EXPORTS statement of the source DLL's module-definition (.def) file. The exported names of functions may differ from the names you use when calling these functions in your code. This difference is hidden by macros used in the SDK header files. For more information, see Conventions for Function Prototypes.

The lpProcName parameter can identify the DLL function by specifying an ordinal value associated with the function in the EXPORTS statement. GetProcAddress verifies that the specified ordinal is in the range 1 through the highest ordinal value exported in the .def file. The function then uses the ordinal as an index to read the function's address from a function table. If the .def file does not number the functions consecutively from 1 to N (where N is the number of exported functions), an error can occur where GetProcAddress returns an invalid, non-NULL address, even though there is no function with the specified ordinal.

In cases where the function may not exist, the function should be specified by name rather than by ordinal value.

LoadLibrary

The LoadLibrary function maps the specified executable module into the address space of the calling process.

For additional load options, use the LoadLibraryEx function.

HMODULE LoadLibrary(
 LPCTSTR lpFileName
);
Parameters
lpFileName

[in] Pointer to a null-terminated string that names the executable module (either a .dll or .exe file). The name specified is the file name of the module and is not related to the name stored in the library module itself, as specified by the LIBRARY keyword in the module-definition (.def) file.

If the string specifies a path but the file does not exist in the specified directory, the function fails. When specifying a path, be sure to use backslashes (\), not forward slashes (/).

If the string does not specify a path, the function uses a standard search strategy to find the file. See the Remarks for more information.

Return Values
If the function succeeds, the return value is a handle to the module.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Windows Me/98/95: If you are using LoadLibrary to load a module that contains a resource whose numeric identifier is greater than 0x7FFF, LoadLibrary fails. If you are attempting to load a 16-bit DLL directly from 32-bit code, LoadLibrary fails. If you are attempting to load a DLL whose subsystem version is greater than 4.0, LoadLibrary fails. If your DllMain function tries to call the Unicode version of a function, LoadLibrary fails.

Remarks
LoadLibrary can be used to map a DLL module and return a handle that can be used in GetProcAddress to get the address of a DLL function. LoadLibrary can also be used to map other executable modules. For example, the function can specify an .exe file to get a handle that can be used in FindResource or LoadResource. However, do not use LoadLibrary to run an .exe file, use the CreateProcess function.

If the module is a DLL not already mapped for the calling process, the system calls the DLL's DllMain function with the DLL_PROCESS_ATTACH value. If the DLL's entry-point function does not return TRUE, LoadLibrary fails and returns NULL. (The system immediately calls your entry-point function with DLL_PROCESS_DETACH and unloads the DLL.)

It is not safe to call LoadLibrary from DllMain. For more information, see the Remarks section in DllMain.

Module handles are not global or inheritable. A call to LoadLibrary by one process does not produce a handle that another process can use — for example, in calling GetProcAddress. The other process must make its own call to LoadLibrary for the module before calling GetProcAddress.

If no file name extension is specified in the lpFileName parameter, the default library extension .dll is appended. However, the file name string can include a trailing point character (.) to indicate that the module name has no extension. When no path is specified, the function searches for loaded modules whose base name matches the base name of the module to be loaded. If the name matches, the load succeeds. Otherwise, the function searches for the file in the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. The system directory. Use the GetSystemDirectory function to get the path of this directory.

4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.

Windows Me/98/95: This directory does not exist.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment variable.

Windows Server 2003, Windows XP SP1: The default value of HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode is 1 (current directory is searched after the system and Windows directories).

Windows XP: If HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode is 1, the current directory is searched after the system and Windows directories, but before the directories in the PATH environment variable. The default value is 0 (current directory is searched before the system and Windows directories).

The first directory searched is the one directory containing the image file used to create the calling process (for more information, see the CreateProcess function). Doing this allows private dynamic-link library (DLL) files associated with a process to be found without adding the process's installed directory to the PATH environment variable.

The search path can be altered using the SetDllDirectory function. This solution is recommended instead of using SetCurrentDirectory or hard-coding the full path to the DLL.

If a path is specified and there is a redirection file for the application, the function searches for the module in the application's directory. If the module exists in the application's directory, the LoadLibrary function ignores the specified path and loads the module from the application's directory. If the module does not exist in the application's directory, LoadLibrary loads the module from the specified directory. For more information, see Dynamic Link Library Redirection.

The Visual C++ compiler supports a syntax that enables you to declare thread-local variables: _declspec(thread). If you use this syntax in a DLL, you will not be able to load the DLL explicitly using LoadLibrary or LoadLibraryEx. If your DLL will be loaded explicitly, you must use the thread local storage functions instead of _declspec(thread).

Windows Me/98/95: LoadLibraryW is supported by the Microsoft Layer for Unicode. To use this, you must add certain files to your application, as outlined in Microsoft Layer for Unicode on Windows Me/98/95 Systems.

Using Run-Time Dynamic Linking

You can use the same DLL in both load-time and run-time dynamic linking. The following source code produces the same output as the load-time example in the previous section. The program uses the LoadLibrary function to get a handle to MYPUTS.DLL. If LoadLibrary succeeds, the program uses the returned handle in the GetProcAddress function to get the address of the DLL's myPuts function. After calling the DLL function, the program calls the FreeLibrary function to unload the DLL.

The following example illustrates an important difference between run-time and load-time dynamic linking. If the MYPUTS.DLL file is not available, the application using load-time dynamic linking simply terminates. The run-time dynamic linking example, however, can respond to the error.

// File: RUNTIME.C

// A simple program that uses LoadLibrary and

// GetProcAddress to access myPuts from MYPUTS.DLL.

#include <stdio.h>

#include <windows.h>

typedef VOID (*MYPROC)(LPTSTR);

VOID main(VOID)

{

 HINSTANCE hinstLib;

 MYPROC ProcAdd;

 BOOL fFreeResult, fRunTimeLinkSuccess = FALSE;

 // Get a handle to the DLL module.

 hinstLib = LoadLibrary("myputs");

 // If the handle is valid, try to get the function address.

 if (hinstLib != NULL)

 {

 ProcAdd = (MYPROC) GetProcAddress(hinstLib, "myPuts");

 // If the function address is valid, call the function.

 if (NULL != ProcAdd)

 {

 fRunTimeLinkSuccess = TRUE;

 (ProcAdd) ("message via DLL function\n");

 }

 // Free the DLL module.

 fFreeResult = FreeLibrary(hinstLib);

 }

 // If unable to call the DLL function, use an alternative.

 if (! fRunTimeLinkSuccess)

 printf("message via alternative method\n");

}
Because the program uses run-time dynamic linking, you should not link with the import library when creating the program module.

LoadLibraryEx

The LoadLibraryEx function maps the specified executable module into the address space of the calling process. The executable module can be a .dll or an .exe file. The specified module may cause other modules to be mapped into the address space.

HMODULE LoadLibraryEx(
 LPCTSTR lpFileName,

 HANDLE hFile,

 DWORD dwFlags
);
Parameters
lpFileName

[in] Pointer to a null-terminated string that names the executable module (either a .dll or an .exe file). The name specified is the file name of the executable module. This name is not related to the name stored in a library module itself, as specified by the LIBRARY keyword in the module-definition (.def) file.

If the string specifies a path, but the file does not exist in the specified directory, the function fails. When specifying a path, be sure to use backslashes (\), not forward slashes (/).

If the string does not specify a path, and the file name extension is omitted, the function appends the default library extension .dll to the file name. However, the file name string can include a trailing point character (.) to indicate that the module name has no extension.

If the string does not specify a path, the function uses a standard search strategy to find the file. See the Remarks for more information.

If mapping the specified module into the address space causes the system to map in other, associated executable modules, the function can use either the standard search strategy or an alternate search strategy to find those modules. See the Remarks for more information.

hFile

This parameter is reserved for future use. It must be NULL.

dwFlags

[in] Action to take when loading the module. If no flags are specified, the behavior of this function is identical to that of the LoadLibrary function. This parameter can be one of the following values.

	Value
	Meaning

	DONT_RESOLVE_DLL_REFERENCES
	If this value is used, and the executable module is a DLL, the system does not call DllMain for process and thread initialization and termination. Also, the system does not load additional executable modules that are referenced by the specified module.

If this value is not used, and the executable module is a DLL, the system calls DllMain for process and thread initialization and termination. The system loads additional executable modules that are referenced by the specified module.

Windows Me/98/95: This value is not supported.

	LOAD_IGNORE_CODE_AUTHZ_LEVEL
	If this value is used, the system does not perform automatic trust comparisons on the DLL or its dependents when they are loaded.

Windows 2000/NT, Windows Me/98/95: This value is not supported.

	LOAD_LIBRARY_AS_DATAFILE
	If this value is used, the system maps the file into the calling process's virtual address space as if it were a data file. Nothing is done to execute or prepare to execute the mapped file. Use this flag when you want to load a DLL only to extract messages or resources from it.

Windows Me/98/95: You can use the resulting module handle only with resource management functions such as EnumResourceLanguages, EnumResourceNames, EnumResourceTypes, FindResource, FindResourceEx, LoadResource, and SizeofResource. You cannot use this handle with specialized resource management functions such as LoadBitmap, LoadCursor, LoadIcon, LoadImage, and LoadMenu.

	LOAD_WITH_ALTERED_SEARCH_PATH
	If this value is used, and lpFileName specifies a path, the system uses the alternate file search strategy discussed in the Remarks section to find associated executable modules that the specified module causes to be loaded.

If this value is not used, or if lpFileName does not specify a path, the system uses the standard search strategy discussed in the Remarks section to find associated executable modules that the specified module causes to be loaded.

Return Values
If the function succeeds, the return value is a handle to the mapped executable module.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Windows Me/98/95: If you are using LoadLibraryEx to load a module that contains a resource whose numeric identifier is greater than 0x7FFF, LoadLibraryEx fails. If you are attempting to load a 16-bit DLL directly from 32-bit code, LoadLibraryEx fails. If you are attempting to load a DLL whose subsystem version is greater than 4.0, LoadLibraryEx fails. If your DllMain function tries to call the Unicode version of a function, LoadLibraryEx fails.

Remarks
The calling process can use the handle returned by this function to identify the module in calls to the GetProcAddress, FindResource, and LoadResource functions.

The LoadLibraryEx function is very similar to the LoadLibrary function. The differences consist of a set of optional behaviors that LoadLibraryEx provides. First, LoadLibraryEx can map a DLL module without calling the DllMain function of the DLL. Second, LoadLibraryEx can use either of two file search strategies to find executable modules that are associated with the specified module. Third, LoadLibraryEx can load a module in a way that is optimized for the case where the module will never be executed, loading the module as if it were a data file. You select these optional behaviors by setting the dwFlags parameter; if dwFlags is zero, LoadLibraryEx behaves identically to LoadLibrary.

It is not safe to call LoadLibraryEx from DllMain. For more information, see the Remarks section in DllMain.

If no path is specified in the lpFileName parameter, and the base file name does not match the base file name of a loaded module, the LoadLibraryEx function uses the same standard file search strategy that LoadLibrary uses to find the executable module and any associated executable modules that it causes to be loaded. This standard strategy searches for a file in the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. The system directory. Use the GetSystemDirectory function to get the path of this directory.

4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.

Windows Me/98/95: This directory does not exist.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment variable.

Windows Server 2003, Windows XP SP1: The default value of HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode is 1 (current directory is searched after the System and Windows directories).

Windows XP: If HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode is 1, the current directory is searched after the System and Windows directories, but before the directories in the PATH environment variable. The default value is 0 (current directory is searched before the system and Windows directories).

If a path is specified, and the dwFlags parameter is set to LOAD_WITH_ALTERED_SEARCH_PATH, the LoadLibraryEx function uses an alternate file search strategy to find any executable modules that the specified module causes to be loaded. This alternate strategy searches for a file in the following sequence:

1. The directory specified by the lpFileName path. In other words, the directory that the specified executable module is in.

2. The current directory.

3. The system directory. Use the GetSystemDirectory function to get the path of this directory.

4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.

Windows Me/98/95: This directory does not exist.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment variable.

Windows Server 2003, Windows XP SP1: The default value of HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode is 1 (current directory is searched after the System and Windows directories).

Windows XP: If HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode is 1, the current directory is searched after the System and Windows directories, but before the directories in the PATH environment variable. The default value is 0 (current directory is searched before the System and Windows directories).

Note that the standard file search strategy and the alternate search strategy differ in just one way: the standard strategy starts its search in the calling application's directory, and the alternate strategy starts its search in the directory of the executable module that LoadLibraryEx is loading.

If you specify the alternate search strategy, its behavior continues until all associated executable modules have been located. After the system starts processing DLL initialization routines, the system reverts to the standard search strategy.

The search path can be altered using the SetDllDirectory function. This solution is recommended instead of using SetCurrentDirectory or hard-coding the full path to the DLL.

If a path is specified and there is a redirection file associated with the application, the LoadLibraryEx function searches for the module in the application directory. If the module exists in the application directory, LoadLibraryEx ignores the path specification and loads the module from the application directory. If the module does not exist in the application directory, the function loads the module from the specified directory. For more information, see Dynamic Link Library Redirection.

Visual C++: The Visual C++ compiler supports a syntax that enables you to declare thread-local variables: _declspec(thread). If you use this syntax in a DLL, you will not be able to load the DLL explicitly using LoadLibrary or LoadLibraryEx. If your DLL will be loaded explicitly, you must use the thread local storage functions instead of _declspec(thread).

Windows Me/98/95: LoadLibraryExW is supported by the Microsoft Layer for Unicode. To use this, you must add certain files to your application, as outlined in Microsoft Layer for Unicode on Windows Me/98/95 Systems.

Looking Up Text for Error Code Numbers

On Windows Server 2003 family, Windows XP, Windows 2000, and Windows NT, it is sometimes necessary to display error text associated with error codes returned from networking-related functions. You may need to perform this task with the network management functions provided by the system.

The error text for these messages is found in the message table file named Netmsg.dll, which is found in %systemroot%\system32. This file contains error messages in the range NERR_BASE (2100) through MAX_NERR(NERR_BASE+899). These error codes are defined in the SDK header file lmerr.h.

The LoadLibrary and LoadLibraryEx functions can load Netmsg.dll. The FormatMessage function maps an error code to message text, given a module handle to the Netmsg.dll file.

The following sample illustrates how to display error text associated with network management functions, in addition to displaying error text associated with system-related error codes. If the supplied error number is in a specific range, the netmsg.dll message module is loaded and used to look up the specified error number with the FormatMessage function.

#include <windows.h>

#include <stdio.h>

#include <lmerr.h>

void

DisplayErrorText(

 DWORD dwLastError

);

#define RTN_OK 0

#define RTN_USAGE 1

#define RTN_ERROR 13

int

__cdecl

main(

 int argc,

 char *argv[]

)

{

 if(argc != 2) {

 fprintf(stderr,"Usage: %s <error number>\n", argv[0]);

 return RTN_USAGE;

 }

 DisplayErrorText(atoi(argv[1]));

 return RTN_OK;

}

void

DisplayErrorText(

 DWORD dwLastError

)

{

 HMODULE hModule = NULL; // default to system source

 LPSTR MessageBuffer;

 DWORD dwBufferLength;

 DWORD dwFormatFlags = FORMAT_MESSAGE_ALLOCATE_BUFFER |

 FORMAT_MESSAGE_IGNORE_INSERTS |

 FORMAT_MESSAGE_FROM_SYSTEM ;

 //

 // If dwLastError is in the network range,

 // load the message source.

 //

 if(dwLastError >= NERR_BASE && dwLastError <= MAX_NERR) {

 hModule = LoadLibraryEx(

 TEXT("netmsg.dll"),

 NULL,

 LOAD_LIBRARY_AS_DATAFILE

);

 if(hModule != NULL)

 dwFormatFlags |= FORMAT_MESSAGE_FROM_HMODULE;

 }

 //

 // Call FormatMessage() to allow for message

 // text to be acquired from the system

 // or from the supplied module handle.

 //

 if(dwBufferLength = FormatMessageA(

 dwFormatFlags,

 hModule, // module to get message from (NULL == system)

 dwLastError,

 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // default language

 (LPSTR) &MessageBuffer,

 0,

 NULL

))

 {

 DWORD dwBytesWritten;

 //

 // Output message string on stderr.

 //

 WriteFile(

 GetStdHandle(STD_ERROR_HANDLE),

 MessageBuffer,

 dwBufferLength,

 &dwBytesWritten,

 NULL

);

 //

 // Free the buffer allocated by the system.

 //

 LocalFree(MessageBuffer);

 }

 //

 // If we loaded a message source, unload it.

 //

 if(hModule != NULL)

 FreeLibrary(hModule);

}
After you compile this program, you can insert the error code number as an argument and the program will display the text. For example:

C:\> netmsg 2453

Could not find domain controller for this domain
SetDllDirectory

The SetDllDirectory function modifies the search path used to locate DLLs for the application.

void SetDllDirectory(
 LPCTSTR lpPathName
);
Parameters
lpPathName

[in] Pointer to a null-terminated string that specifies the directories to be added to the search path, separated by semicolons. If this parameter is NULL, the default search path is used.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The SetDllDirectory function affects all subsequent calls to the LoadLibrary and LoadLibraryEx functions. After calling SetDllDirectory, the DLL search path is:

1. The directory from which the application loaded.

2. The directory specified by the lpPathName parameter.

3. The system directory. Use the GetSystemDirectory function to get the path of this directory. The name of this directory is System32.

4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched. The name of this directory is System.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment variable.

To revert to the default search path used by LoadLibrary and LoadLibraryEx, call SetDllDirectory with NULL.

To compile an application that uses this function, define the _WIN32_WINNT macro as 0x0502 or later. For more information, see Using the SDK Headers.

 33

